
BIBCLEAN(1) BIBCLEAN(1)

NAME

bibclean − prettyprint and syntax check BibTeX and Scribe bibliography data base files

SYNOPSIS

bibclean [−author] [−error-log filename]

[−help] [’−?’] [−[no-]check-values] [−[no-]delete-empty-fields]

[−[no-]file-position] [−[no-]fix-initials] [−[no-]fix-names]

[−[no-]par-breaks] [−[no-]print-patterns] [−[-no]read-init-files filename]

[−[no-]remove-OPT-prefixes] [−[no-]scribe] [−[no-]trace-file-opening]

[−[no-]warnings] [−version]

<infile or bibfile1 bibfile2 bibfile3 . . .

>outfile

All options can be abbreviated to a unique leading prefix.

An explicit file name of ‘‘−’’ represents standard input; it is assumed if no input files are specified.

On VAX VMS and IBM PC DOS, the leading ‘‘−’’ on option names may be replaced by a slash, ‘‘/’’; how-

ev er, the ‘‘−’’ option prefix is always recognized.

DESCRIPTION

bibclean prettyprints input BIBTEX files to stdout, and checks the brace balance and bibliography entry

syntax as well. It can be used to detect problems in BIBTEX files that sometimes confuse even BIBTEX

itself, and importantly, can be used to normalize the appearance of collections of BIBTEX files.

Here is a summary of the formatting actions:

• BIBTEX items are formatted into a consistent structure with one key = "value" pair per line, and the ini-

tial @ and trailing right brace in column 1.

• Tabs are expanded into blank strings; their use is discouraged because they inhibit portability, and can

suffer corruption in electronic mail.

• Long string values are split at a blank and continued onto the next line with leading indentation.

• A single blank line separates adjacent bibliography entries.

• Text outside BIBTEX entries is passed through verbatim.

• Outer parentheses around entries are converted to braces.

• Personal names in author and editor field values are normalized to the form ‘‘P. D. Q. Bach’’, from

‘‘P.D.Q. Bach’’ and ‘‘Bach, P.D.Q.’’.

• Hyphen sequences in page numbers are converted to en-dashes.

• Month values are converted to standard BIBTEX string abbreviations.

• In titles, sequences of upper-case characters at brace level zero are braced to protect them from being

converted to lower-case letters by some bibliography styles.

• ISBN (International Standard Book Number) and ISSN (International Standard Serial Number) entry

values are examined to verify the checksums of each listed number.

The standardized format of the output of bibclean facilitates the later application of simple filters, such as

bibextract(1), bibindex(1), biblook(1), bibsort(1), citefind(1), and citetags(1), to process the text, and

also is the one expected by the GNU Emacs BIBTEX support functions.

OPTIONS

Command-line switches may be abbreviated to a unique leading prefix, and letter case is not significant.

All options are parsed before any input bibliography files are read, no matter what their order on the com-

mand line. Options that correspond to a yes/no setting of a flag have a form with a prefix "no-" to set the

flag to no. For such options, the last setting determines the flag value used. This is significant when

options are also specified in initialization files (see the INITIALIZATION FILES manual section).

Version 2.05 17 November 1992 1

BIBCLEAN(1) BIBCLEAN(1)

−author Display an author credit on stderr. Sometimes an executable program is

separated from its documentation and source code; this option provides a

way to recover from that.

−error-log filename Redirect stderr to the indicated file, which will then contain all of the error

and warning messages. This option is provided for those systems that have

difficulty redirecting stderr.

−help or −? Display a help message on stderr, giving a usage description, similar to this

section of the manual pages.

−init-file filename Provide an explicit value pattern initialization file. It will be processed after

any system-wide and job-wide initialization files found on the PATH (for

VAX VMS, SYS$SYSTEM) and BIBINPUTS search paths, respectively,

and may override them. It in turn may be overridden by a subsequent file-

specific initialization file. The initialization file name can be changed at

compile time, but defaults to .bibcleanrc on UNIX, and to bibclean.ini else-

where. For further details, see the INITIALIZATION FILES manual sec-

tion.

−[no-]check-values With the positive form, apply heuristic pattern matching to value fields in

order to detect possible errors (e.g. ‘‘year = "192"’’ instead of ‘‘year =

"1992"’’), and issue warnings when unexpected patterns are found.

This checking is usually beneficial, but if it produces too many bogus warn-

ings for a particular bibliography file, you can disable it with the negative

form of this option. Default: yes.

−[no-]delete-empty-fields With the positive form, remove all key/value pairs for which the value is an

empty string. This is helpful in cleaning up bibliographies generated from

text editor templates. Compare this option with −[no-]remove-OPT-

prefixes described below. Default: no.

−[no-]file-position With the positive form, give detailed file position information in warning

and error messages. Default: no.

−[no-]fix-initials With the positive form, insert a space after a period following author ini-

tials. Default: yes.

−[no-]fix-names With the positive form, reorder author and editor name lists to remove com-

mas at brace level zero, placing first names or initials before last names.

Default: yes.

−[no-]par-breaks With the negative form, a paragraph break (either a formfeed, or a line con-

taining only spaces) is not permitted in value strings, or between key/value

pairs. This may be useful to quickly trap runaway strings arising from mis-

matched delimiters. Default: yes.

−[no-]print-patterns With the positive form, print the value patterns read from initialization files

as they are added to internal tables. Use this option to check newly-added

patterns, or to see what patterns are being used.

When bibclean is compiled with native pattern-matching code (the default),

these patterns are the ones that will be used in checking value strings for

valid syntax, and all of them are specified in initialization files, rather than

hard-coded into the program. For further details, see the INITIALIZA-

TION FILES manual section. Default: no.

−[no-]read-init-files With the negative form, suppress loading of system-, user-, and file-specific

initialization files. Initializations will come only from those files explicitly

given by −init-file filename options. Default: yes.

Version 2.05 17 November 1992 2

BIBCLEAN(1) BIBCLEAN(1)

−[no-]remove-OPT-prefixes With the positive form, remove the ‘‘OPT’’ prefix from each key name

where the corresponding value is not an empty string. The prefix ‘‘OPT’’

must be entirely in upper-case to be recognized. This option is for bibli-

ographies generated with the help of the GNU Emacs BIBTEX editing sup-

port, which generates templates with optional fields identified by the

‘‘OPT’’ prefix. Although the function M-x bibtex-remove-OPT normally

bound to the keystrokes C-c C-o does the job, users often forget, with the

result that BIBTEX does not recognize the key name, and ignores the value

string. Compare this option with −[no-]delete-empty-fields described

above. Default: no.

−[no-]scribe With the positive form, accept input syntax conforming to the SCRIBE docu-

ment system. The output will be converted to conform to BIBTEX syntax.

See the SCRIBE BIBLIOGRAPHY FORMAT manual section for further

details. Default: no.

−[no-]trace-file-opening With the positive form, log in the error log file the names of all files which

bibclean attempts to open. Use this option to identify where initialization

files are located.

−[no-]warnings With the positive form, allow all warning messages. The negative form is

not recommended since it may mask problems that should be repaired.

Default: yes.

−version Display the program version number on stderr. This will also include an

indication of who compiled the program, the host name on which it was

compiled, the time of compilation, and the type of string value matching

code selected, when that information is available to the compiler.

ERROR RECOVERY AND WARNINGS

When bibclean detects an error, it issues an error message to both stderr and stdout. That way, the user is

clearly notified, and the output bibliography also contains the message at the point of error.

Error messages begin with a distinctive pair of queries, ??, beginning in column 1, followed by the input

file name and line number. If the −file-position option was specified, they also contain the input and output

positions of the current file, entry, and value. Each position includes the file byte number, the line number,

and the column number. In the event of a runaway string argument, the entry and value positions should

precisely pinpoint the erroneous bibliography entry, and the file positions will indicate where it was

detected, which may be rather later in the files.

Warning messages identify possible problems, and are therefore sent only to stderr, and not to stdout, so

they nev er appear in the output file. They are identified by a distinctive pair of percents, %%, beginning in

column 1, and as with error messages, may be followed by file position messages if the −file-position

option was specified.

For convenience, the first line of each error and warning message sent to stderr is formatted according to

the expectations of the GNU Emacs next-error command. You can invoke bibclean with the Emacs M-x

compile<RET>bibclean filename.bib >filename.new command, then use the next-error command, normally

bound to C-x ‘ (that’s a grave, or back, accent), to move to the location of the error in the input file.

If error messages are ignored, and left in the output bibliography file, they will precipitate an error when the

bibliography is next processed with BIBTEX.

After issuing an error message, bibclean then resynchronizes its input by copying it verbatim to stdout until

a new bibliography entry is recognized on a line in which the first non-blank character is an at-sign (@).

This ensures that nothing is lost from the input file(s), allowing corrections to be made in either the input or

the output files. However, if bibclean detects an internal error in its data structures, it will terminate

abruptly without further input or output processing; this kind of error should never happen, and if it does, it

should be reported immediately to the author of the program. Errors in initialization files, and running out

of dynamic memory, will also immediately terminate bibclean.

Version 2.05 17 November 1992 3

BIBCLEAN(1) BIBCLEAN(1)

INITIALIZATION FILES

bibclean can be compiled with one of three different types of pattern matching; the choice is made by the

installer at compile time:

• The original version uses explicit hand-coded tests of value-string syntax.

• The second version uses regular-expression pattern-matching host library routines together

with regular-expression patterns that come entirely from initialization files.

• The third version uses special patterns that come entirely from initialization files.

The second and third versions are the ones of most interest here, because they allow the user to control

what values are considered acceptable. However, command-line options can also be specified in initializa-

tion files, no matter which pattern matching choice was selected.

When bibclean starts, it searches for initialization files, finding the first one in the system executable pro-

gram search path (on UNIX and IBM PC DOS, PATH) and the first one in the BIBINPUTS search path,

and processes them in turn. Then, when command-line arguments are processed, any additional files speci-

fied by −init-file filename options are also processed. Finally, immediately before each named bibliography

file is processed, an attempt is made to process an initialization file with the same name, but with the exten-

sion changed to .ini. This scheme permits system-wide, user-wide, session-wide, and file-specific initial-

ization files to be supported.

When input is taken from stdin, there is no file-specific initialization.

For precise control, the −no-init-files option suppresses all initialization files except those explicitly named

by −init-file filename options, either on the command line, or in requested initialization files.

Recursive execution of initialization files with nested −init-file options is permitted; if the recursion is cir-

cular, bibclean will finally get a non-fatal initialization file open failure after opening too many files. This

terminates further initialization file processing. As the recursion unwinds, the files are all closed, then

execution proceeds normally.

An initialization file may contain empty lines, comments from percent to end of line (just like TEX), option

switches, and key/pattern or key/pattern/message assignments. Leading and trailing spaces are ignored.

This is best illustrated by a short example:

% This is a small bibclean initialization file

-init-file /u/math/bib/.bibcleanrc %% departmental patterns

chapter = "\"D\"" %% 23

pages = "\"D--D\"" %% 23--27

volume = "\"D \\an\\d D\"" %% 11 and 12

year = \

"\"dddd, dddd, dddd\"" \

"Multiple years specified." %% 1989, 1990, 1991

-no-fix-names %% do not modify author/editor lists

Long logical lines can be split into multiple physical lines by breaking at a backslash-newline pair; the

backslash-newline pair is discarded. This processing happens while characters are being read, before any

further interpretation of the input stream.

Each logical line must contain a complete option (and its value, if any), or a complete key/pattern pair, or a

key/pattern/message triple.

Comments are stripped during the parsing of the key, pattern, and message values. The comment start sym-

bol is not recognized inside quoted strings, so it can be freely used in such strings.

Version 2.05 17 November 1992 4

BIBCLEAN(1) BIBCLEAN(1)

Comments on logical lines that were input as multiple physical lines via the backslash-newline convention

must appear on the last physical line; otherwise, the remaining physical lines will become part of the com-

ment.

Pattern strings must be enclosed in quotation marks; within such strings, a backslash starts an escape mech-

anism that is commonly used in UNIX software. The recognized escape sequences are:

\a alarm bell (octal 007)

\b backspace (octal 010)

\f formfeed (octal 014)

\n newline (octal 012)

\r carriage return (octal 015)

\t horizontal tab (octal 011)

\v vertical tab (octal 013)

\ooo character number octal ooo (e.g \012 is linefeed)

\0xhh character number hexadecimal hh (e.g. \0x0a is linefeed) \0Xhh is character number

hexadecimal hh (e.g. \0X0A is linefeed)

Backslash followed by any other character produces just that character. Thus, \% gets a literal percent into

a string (preventing its interpretation as a comment), \" produces a quotation mark, and \\ produces a single

backslash.

Use of an ASCII NUL (\0) in a string will terminate it; this is a feature of the C programming language in

which bibclean is implemented.

Ke y/pattern pairs can be separated by arbitrary space, and optionally, either an equals or colon functioning

as an assignment operator. Thus, the following are equivalent:

pages="\"D--D\""

pages:"\"D--D\""

pages "\"D--D\""

pages = "\"D--D\""

pages : "\"D--D\""

pages "\"D--D\""

Each key name can have an arbitrary number of patterns associated with it; however, they must be specified

in separate key/pattern assignments.

An empty pattern string causes previously-loaded patterns for that key name to be forgotten. This feature

permits an initialization file to completely discard patterns from earlier initialization files.

Patterns for value strings are represented in a tiny special-purpose language that is both convenient and suit-

able for bibliography value string syntax checking. While not as powerful as the language of regular-

expression patterns, its parsing can be portably implemented in less than 3% of the code in a widely-used

regular-expression parser (the GNU regexp package).

The patterns are represented by the following special characters:

<space> one or more spaces

a exactly one letter

A one or more letters

d exactly one digit

D one or more digits

w exactly one word (one or more letters and digits)

Version 2.05 17 November 1992 5

BIBCLEAN(1) BIBCLEAN(1)

W one or more space-separated words, beginning and ending with a word

. one ‘special’ character, one of the characters <space> ! # () * + , - . / : ; ? [] ˜, a subset of

punctuation characters that are typically used in string values

: one or more ‘special’ characters

X one or more ‘special’-separated words, beginning and ending with a word

\x exactly one x (x is any character), possibly with an escape sequence interpretation given

earlier

x exactly the character x (x is anything but one of these pattern characters:

a A d D w W . : <space> \)

The X pattern character is very powerful, but generally inadvisable, since it will match almost anything

likely to be found in a BIBTEX value string. The reason for providing pattern matching on the value strings

is to uncover possible errors, not mask them.

There is no provision for specifying ranges or repetitions of characters, but this can usually be done with

separate patterns. It is a good idea to accompany the pattern with a comment showing the kind of thing it is

expected to match. Here is a portion of an initialization file giving a few of the patterns used to match num-

ber value strings:

number = "\"D\"" %% 23

number = "\"A AD\"" %% PN LPS5001

number = "\"A D(D)\"" %% RJ 34(49)

number = "\"A D\"" %% XNSS 288811

number = "\"A D\\.D\"" %% Version 3.20

number = "\"A-A-D-D\"" %% UMIAC-TR-89-11

number = "\"A-A-D\"" %% CS-TR-2189

number = "\"A-A-D\\.D\"" %% CS-TR-21.7

For a bibliography that contains only article entries, this list should probably be reduced to just the first pat-

tern, so that anything other than a digit string fails the pattern-match test. This is easily done by keeping

bibliography-specific patterns in a corresponding file with extension .ini, since that file is read automati-

cally.

You should be sure to use empty pattern strings in this pattern file to discard patterns from earlier initializa-

tion files.

The value strings passed to the pattern matcher contain surrounding quotes, so the patterns should also.

However, you could use a pattern specification like "\"D" to match an initial digit string followed by any-

thing else; the omission of the final quotation mark \" in the pattern allows the match to succeed without

checking that the next character in the value string is a quotation mark.

Because the value strings are intended to be processed by TEX, the pattern matching ignores braces, and

TEX control sequences, together with any space following those control sequences. Space around braces

are preserved. This convention allows the pattern fragment A-AD-D to match the value string

TN-K\slash 27-70, because the value is implicitly collapsed to TN-K27-70 during the matching operation.

bibclean’s normal action when a string value fails to match any of the corresponding patterns is to issue a

warning message something like this: "Unexpected value in ‘‘year = "192"’’. In most cases, that is suffi-

cient to alert the user to a problem. In some cases, however, it may be desirable to associate a different

message with a particular pattern. This can be done by supplying a message string following the pattern

string. Format items %% (single percent), %e (entry name), %k (key name), %t (citation tag), and %v

(string value) are available to get current values expanded in the messages. Here is an example:

chapter = "\"D:D\"" "Colon found in ‘‘%k = %v’’" %% 23:2

To be consistent with other messages output by bibclean, the message string should not end with punctua-

tion.

If you wish to make the message an error, rather than just a warning, begin it with a query (?), like this:

Version 2.05 17 November 1992 6

BIBCLEAN(1) BIBCLEAN(1)

chapter = "\"D:D\"" "?Colon found in ‘‘%k = %v’’" %% 23:2

The query will not be included in the output message.

Escape sequences are supported in message strings, just as they are in pattern strings. You can use this to

advantage for fancy things, such as terminal display mode control. If you rewrite the previous example as

chapter = "\"D:D\"" \

"?\033[7mColon found in ‘‘%k = %v’’\033[0m" %% 23:2

the error message will appear in inverse video on display screens that support ANSI terminal control

sequences. Such practice is not normally recommended, since it may have undesirable effects on some out-

put devices. Nevertheless, you may find it useful for restricted applications.

For some types of bibliography keys, bibclean contains special-purpose code to supplement or replace the

pattern matching:

• ISBN and ISSN fields are handled this way because their validation requires evaluation of

checksums that cannot be expressed by simple patterns; no patterns are even used in these two

cases.

• When bibclean is compiled with pattern-matching code support, chapter, number, pages, and

volume values are checked only by pattern matching.

• month values are first checked against the standard BIBTEX month abbreviations, and only if no

match is found are patterns then used.

• year values are first checked against patterns, then if no match is found, the year numbers are

found and converted to integer values for testing against reasonable bounds.

Values for other keywords are checked only against patterns. You can provide patterns for any keyword

you like, even ones bibclean does not already know about. New ones are simply added to an internal table

that is searched for each string to be validated.

The special keyword, tag, represents the bibliographic citation tag. It can be given patterns, like any other

keyword. Here is an initialization file pattern assignment that will match an author name, a colon, an alpha-

betic string, and a two-digit year:

tag = "A:Add" %% Knuth:TB86

Notice that no quotation marks are included in the pattern, because the citation tags are not quoted. You

can use such patterns to help enforce uniform naming conventions for citation tags, which is increasingly

important as your bibliography data base grows.

SCRIBE BIBLIOGRAPHY FORMAT

bibclean’s support for the SCRIBE bibliography format is based on the syntax description in the SCRIBE

Introductory User’s Manual, 3rd Edition, May 1980. SCRIBE was originally developed by Brian Reid at

Carnegie-Mellon University, and is now marketed by Unilogic, Ltd.

The BIBTEX bibliography format was strongly influenced by SCRIBE, and indeed, with care, it is possible to

share bibliography files between the two systems. Nevertheless, there are some differences, so here is a

summary of features of the SCRIBE bibliography file format:

(1) Letter case is not significant in keywords and entry names, but case is preserved in value strings.

(2) In key/value pairs, the key and value may be separated by one of three characters: =, /, or space.

Space may optionally surround these separators.

(3) Value delimiters are any of these seven pairs: { } [] () < > ’ ’ " " ‘ ‘

(4) Value delimiters may not be nested, even though with the first four delimiter pairs, nested balanced

delimiters would be unambiguous.

(5) Delimiters can be omitted around values that contain only letters, digits, sharp (#), ampersand (&),

period (.), and percent (%).

Version 2.05 17 November 1992 7

BIBCLEAN(1) BIBCLEAN(1)

(6) Outside of delimited values, a literal at-sign (@) is represented by doubled at-signs (@@).

(7) Bibliography entries begin with @name, as for BIBTEX, but any of the seven SCRIBE value delimiter

pairs may be used to surround the values in key/value pairs. As in (4), nested delimiters are forbid-

den.

(8) Arbitrary space may separate entry names from the following delimiters.

(9) @Comment is a special command whose delimited value is discarded. As in (4), nested delimiters

are forbidden.

(10) The special form

@Begin{comment}

. . .

@End{comment}

permits encapsulating arbitrary text containing any characters or delimiters, other than

‘‘@End{comment}’’. Any of the seven delimiter pairs may be used around the word ‘‘comment’’

following the ‘‘@Begin’’ or ‘‘@End’’; the delimiters in the two cases need not be the same, and con-

sequently, ‘‘@Begin{comment}’’/‘‘@End{comment}’’ pairs may not be nested.

(11) The key keyword is required in each bibliography entry.

(12) A backslashed quote in a string will be assumed to be a TEX accent, and braced appropriately. While

such accents do not conform to SCRIBE syntax, SCRIBE-format bibliographies have been found that

appear to be intended for TEX processing.

Because of this loose syntax, bibclean’s normal error detection heuristics are less effective, and conse-

quently, SCRIBE mode input is not the default; it must be explicitly requested.

SEE ALSO

bibextract(1), bibindex(1), biblook(1), bibsort(1), bibtex(1), citefind(1), citetags(1), latex(1), scribe(1),

tex(1)

FILES

*.bib BIBTEX and SCRIBE bibliography data base files.

*.ini File-specific initialization files.

.bibcleanrc UNIX system and user initialization files.

bibclean.ini Non-UNIX system and user initialization files.

BIBINPUTS Search path for user initialization files.

PATH Search path for system initialization files on UNIX and IBM PC DOS>

SYS$SYSTEM

Search path for system initialization files on VAX VMS.

AUTHOR

Nelson H. F. Beebe

Center for Scientific Computing

Department of Mathematics

University of Utah

Salt Lake City, UT 84112

USA

Tel: +1 801 581 5254

FAX: +1 801 581 4148

Email: <beebe@math.utah.edu>

Version 2.05 17 November 1992 8

